Subquadratic Time Encodable Codes Beating the Gilbert–Varshamov Bound

Autor: Matthew Weidner, Anand Kumar Narayanan
Přispěvatelé: Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ALgorithms for coMmunicAtion SecuriTY (ALMASTY), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2019
Předmět:
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
FOS: Computer and information sciences
Computer Science - Information Theory
[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]
02 engineering and technology
Algebraic geometry
Library and Information Sciences
Computational Complexity (cs.CC)
Omega
0202 electrical engineering
electronic engineering
information engineering

FOS: Mathematics
Number Theory (math.NT)
Function field
ComputingMilieux_MISCELLANEOUS
Mathematics
Computer Science::Information Theory
Discrete mathematics
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Mathematics - Number Theory
Degree (graph theory)
Information Theory (cs.IT)
020206 networking & telecommunications
Matrix multiplication
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Computer Science Applications
Gilbert–Varshamov bound
Computer Science - Computational Complexity
[INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT]
Exponent
Decoding methods
Information Systems
Zdroj: IEEE Transactions on Information Theory
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2019, 65 (10), pp.6010-6021. ⟨10.1109/TIT.2019.2930538⟩
ISSN: 0018-9448
DOI: 10.1109/tit.2019.2930538
Popis: We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse.
Databáze: OpenAIRE