Front propagation in hyperbolic fractional reaction-diffusion equations

Autor: Vicente Ortega-Cejas, Vicenç Méndez
Rok vydání: 2005
Předmět:
Zdroj: Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: From the continuous-time random walk scheme and assuming a L\'evy waiting time distribution typical of subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional derivatives. The linear speed selection of wave fronts in this equation is analyzed. When the reaction-diffusion dimensionless number and the fractional index satisfy a certain condition, we find fronts exhibiting an unphysical behavior: they travel faster in the subdiffusive than in the diffusive regime.
Databáze: OpenAIRE