Front propagation in hyperbolic fractional reaction-diffusion equations
Autor: | Vicente Ortega-Cejas, Vicenç Méndez |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) Recercat. Dipósit de la Recerca de Catalunya instname |
Popis: | From the continuous-time random walk scheme and assuming a L\'evy waiting time distribution typical of subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional derivatives. The linear speed selection of wave fronts in this equation is analyzed. When the reaction-diffusion dimensionless number and the fractional index satisfy a certain condition, we find fronts exhibiting an unphysical behavior: they travel faster in the subdiffusive than in the diffusive regime. |
Databáze: | OpenAIRE |
Externí odkaz: |