Explicit quadratic Chabauty over number fields
Autor: | Francesca Bianchi, Jennifer S. Balakrishnan, J. Steffen Müller, Amnon Besser |
---|---|
Přispěvatelé: | Algebra |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Class (set theory) Primary 11G30 Secondary 11S80 11Y50 14G40 Degree (graph theory) Mathematics - Number Theory General Mathematics Mathematics::Number Theory 010102 general mathematics 0102 computer and information sciences Extension (predicate logic) Algebraic number field 01 natural sciences 14G40 Secondary 11S80 math.NT Quadratic equation 11Y50 010201 computation theory & mathematics Primary 11G30 Genus (mathematics) FOS: Mathematics Number Theory (math.NT) 0101 mathematics Algebra over a field Mathematics |
Zdroj: | Israel journal of mathematics, 243 |
ISSN: | 0021-2172 |
Popis: | We generalize the explicit quadratic Chabauty techniques for integral points on odd degree hyperelliptic curves and for rational points on genus 2 bielliptic curves to arbitrary number fields using restriction of scalars. This is achieved by combining equations coming from Siksek's extension of classical Chabauty with equations defined in terms of p-adic heights attached to independent continuous idele class characters. We give several examples to show the practicality of our methods. Fixed minor issues following the referee's suggestions; 33 pages |
Databáze: | OpenAIRE |
Externí odkaz: |