Stability and efficiency of a CMOS sensor as detector of low energy beta and gamma particles
Autor: | M. De Simoni, Franco Meddi, E. Solfaroli Camillocci, Riccardo Faccini, Á. Tóth, V. Bocci, M. Fischetti, Francesco Collamati, R. Mirabelli, C. Campeggi, Maurizio Biasini, C. Mancini Terracciano, R. Amoruso, M. Ionica, L. Servoli, Gaia Franciosini, K. Kanxheri, S. Morganti, L. Alunni Solestizi, P. De Maria |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
CMOS sensor
Materials science business.industry Detector Image reconstruction in medical imaging Stability (probability) Particle detector Calculation methods 3. Good health 030218 nuclear medicine & medical imaging 03 medical and health sciences 0302 clinical medicine Low energy radio-guided surgery 030220 oncology & carcinogenesis Intra-operative probes Measuring instrument Optoelectronics business Instrumentation Sensitivity (electronics) Mathematical Physics |
Zdroj: | Journal of Instrumentation |
Popis: | Radio Guided Surgery (RGS) is a nuclear medicine technique allowing the surgeon to identify tumor residuals in real time with a millimetric resolution, thanks to a radiopharmaceutical as tracer and a probe as detector. The use of beta(-) emitters, instead of gamma or beta(+), has been recently proposed with the aim to increase the technique sensitivity and reducing both the administered activity to the patient and the medical exposure. In this paper, the possibility to use the commercial CMOS Image Sensor MT9V115, originally designed for visible light imaging, as beta(-) radiation detector RGS is discussed. Being crucial characteristics in a surgical environment, in particular its stability against time, operating temperature, integration time and gain has been studied on laboratory measurements. Moreover, a full Monte Carlo simulation of the detector has been developed. Its validation against experimental data allowed us to obtain efficiency curves for both beta and gamma particles, and also to evaluate the effect of the covering heavy resin protective layer that is present in the "off the shelf" detector. This study suggests that a dedicated CMOS Image Sensor (i.e. one produced without the covering protective layer) represents the ideal candidate detector for RGS, able to massively increase the amount of application cases and the efficacy of this technique. |
Databáze: | OpenAIRE |
Externí odkaz: |