A Fast Euclidean Algorithm for Gaussian Integers
Autor: | George E. Collins |
---|---|
Rok vydání: | 2002 |
Předmět: |
Discrete mathematics
Binary GCD algorithm Algebra and Number Theory Euclidean division Gaussian integer 010103 numerical & computational mathematics 0102 computer and information sciences 01 natural sciences Combinatorics Euclidean algorithm symbols.namesake Computational Mathematics Quadratic integer 010201 computation theory & mathematics Greatest common divisor symbols Euclidean domain 0101 mathematics Extended Euclidean algorithm Mathematics |
Zdroj: | Journal of Symbolic Computation. 33(4):385-392 |
ISSN: | 0747-7171 |
DOI: | 10.1006/jsco.2001.0518 |
Popis: | A new version of the Euclidean algorithm is developed for computing the greatest common divisor of two Gaussian integers. It uses approximation to obtain a sequence of remainders of decreasing absolute values. The algorithm is compared with the new (1 + i)-ary algorithm of Weilert and found to be somewhat faster if properly implemented. |
Databáze: | OpenAIRE |
Externí odkaz: |