Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups

Autor: Katrin Fässler, Daniela Di Donato
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group $\mathbb{H}^n$, $n\in \mathbb{N}$. For $1\leq k\leq n$, we show that every intrinsic $L$-Lipschitz graph over a subset of a $k$-dimensional horizontal subgroup $\mathbb{V}$ of $\mathbb{H}^n$ can be extended to an intrinsic $L'$-Lipschitz graph over the entire subgroup $\mathbb{V}$, where $L'$ depends only on $L$, $k$, and $n$. We further prove that $1$-dimensional intrinsic $1$-Lipschitz graphs in $\mathbb{H}^n$, $n\in \mathbb{N}$, admit corona decompositions by intrinsic Lipschitz graphs with smaller Lipschitz constants. This complements results that were known previously only in the first Heisenberg group $\mathbb{H}^1$. The main difference to this case arises from the fact that for $1\leq k
Comment: 30 pages; v2: minor revision, results unchanged
Databáze: OpenAIRE