IMAGING REDOX STATE HETEROGENEITY WITHIN INDIVIDUAL EMBRYONIC STEM CELL COLONIES
Autor: | John D. Gearhart, He N. Xu, Davida F. Goings, Russell C. Addis, Britton Chance, Lin Z. Li, Shoko Nioka |
---|---|
Rok vydání: | 2011 |
Předmět: |
Redox ratio
Biomedical Engineering Medicine (miscellaneous) Flavoprotein Nicotinamide adenine dinucleotide Biology Embryonic stem cell Redox Imaging data Article Atomic and Molecular Physics and Optics Electronic Optical and Magnetic Materials Cell biology chemistry.chemical_compound Biochemistry chemistry Expression pattern biology.protein Stem cell |
Zdroj: | J Innov Opt Health Sci |
ISSN: | 1793-7205 1793-5458 |
DOI: | 10.1142/s1793545811001617 |
Popis: | Redox state mediates embryonic stem cell (ESC) differentiation and thus offers an important complementary approach to understanding the pluripotency of stem cells. NADH redox ratio (NADH/(Fp + NADH)), where NADH is the reduced form of nicotinamide adenine dinucleotide and Fp is the oxidized flavoproteins, has been established as a sensitive indicator of mitochondrial redox state. In this paper, we report our redox imaging data on the mitochondrial redox state of mouse ESC (mESC) colonies and the implications thereof. The low-temperature NADH/Fp redox scanner was employed to image mESC colonies grown on a feeder layer of gamma-irradiated mouse embryonic fibroblasts (MEFs) on glass cover slips. The result showed significant heterogeneity in the mitochondrial redox state within individual mESC colonies (size: ~200–440 μm), exhibiting a core with a more reduced state than the periphery. This more reduced state positively correlates with the expression pattern of Oct4, a well-established marker of pluripotency. Our observation is the first to show the heterogeneity in the mitochondrial redox state within a mESC colony, suggesting that mitochondrial redox state should be further investigated as a potential new biomarker for the stemness of embryonic stem cells. |
Databáze: | OpenAIRE |
Externí odkaz: |