Huntingtin-interacting Proteins, HIP14 and HIP14L, Mediate Dual Functions, Palmitoyl Acyltransferase and Mg2+ Transport

Autor: Angela Goytain, Rochelle M. Hines, Gary A. Quamme
Rok vydání: 2008
Předmět:
Zdroj: Journal of Biological Chemistry. 283:33365-33374
ISSN: 0021-9258
DOI: 10.1074/jbc.m801469200
Popis: Polyglutamine expansions of huntingtin protein are responsible for the Huntington neurological disorder. HIP14 protein has been shown to interact with huntingtin. HIP14 and a HIP14-like protein, HIP14L, with a 69% similarity reside in the Golgi and possess palmitoyl acyltransferase activity through innate cysteine-rich domains, DHHC. Here, we used microarray analysis to show that reduced extracellular magnesium concentration increases HIP14L mRNA suggesting a role in cellular magnesium metabolism. Because HIP14 was not on the microarray platform, we used real-time reverse transcriptase-PCR to show that HIP14 and HIP14L transcripts were up-regulated 3-fold with low magnesium. Western analysis with a specific HIP14 antibody also showed that endogenous HIP14 protein increased with diminished magnesium. Furthermore, we demonstrate that when expressed in Xenopus oocytes, HIP14 and HIP14L mediate Mg2+ uptake that is electrogenic, voltage-dependent, and saturable with Michaelis constants of 0.87 ± 0.02 and 0.74 ± 0.07 mm, respectively. Diminished magnesium leads to an apparent increase in HIP14-green fluorescent protein and HIP14L-green fluorescent fusion proteins in the Golgi complex and subplasma membrane post-Golgi vesicles of transfected epithelial cells. We also show that inhibition of palmitoylation with 2-bromopalmitate, or deletion of the DHHC motif HIP14ΔDHHC, diminishes HIP14-mediated Mg2+ transport by about 50%. Coexpression of an independent protein acyltransferase, GODZ, with the deleted HIP14ΔDHHC mutant restored Mg2+ transport to values observed with wild-type HIP14. Although we did not directly measure palmitoylation of HIP14 in these studies, the data are consistent with a regulatory role of autopalmitoylation in HIP14-mediated Mg2+ transport. We conclude that the huntingtin interacting protein genes, HIP14 and HIP14L, encode Mg2+ transport proteins that are regulated by their innate palmitoyl acyltransferases thus fulfilling the characteristics of “chanzymes.”
Databáze: OpenAIRE