Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers

Autor: Yutaka Suzuki, Tomoaki Tahara, Yu Katsuyama, Daichi Kawaguchi, Darin Lanjakornsiripan, Yukiko Gotoh, Yugo Fukazawa, Baek Jun Pior, Shohei Furutachi
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Nature Communications, Vol 9, Iss 1, Pp 1-15 (2018)
Nature Communications
ISSN: 2041-1723
Popis: Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.
Several studies have suggested that astrocytes in the neocortex are more diverse than previously thought. Here, the authors describe layer-specific differences in morphology and molecular characteristics of astrocytes that depend on the neurons within those layers.
Databáze: OpenAIRE