Snow processes in mountain forests: Interception modeling for coarse-scale applications
Autor: | N. Helbig, D. Moeser, M. Teich, L. Vincent, Y. Lejeune, J.-E. Sicart, J.-M. Monnet |
---|---|
Přispěvatelé: | Institut Fédéral de Recherches sur la Forêt, la Neige et le Paysage (WSL), Institut Fédéral de Recherches [Suisse], USGS New Mexico Water Science Center, United States Geological Survey (USGS), Federal Research and Training Centre For Forests, Natural Hazards and Landscape (BFW), Department of Wildland Resources, Utah State University (USU), Centre d'Etudes de la Neige (CEN), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Université Grenoble Alpes (UGA), Université de Toulouse (UT), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Laboratoire des EcoSystèmes et des Sociétés en Montagne (UR LESSEM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Federal Office of the Environment (FOEN) - USGS South Central Climate Adaptation Science Center - Swiss National Science Foundation (SNSF) grant nos. P2EZP2_155606 and P300P2_171236) - Utah Agricultural Experiment Station (UAES, as part of the 'Forests and snow microstructure: key to water supply in the 21st century?' research project) - Utah State University (USU) Department of Wildland Resources - Universite Grenoble Alpes as part of the Labex-OSUG@2020 research (grant no. ANR10 LABX 56) - National Science Foundation Established Program to Stimulate Competitive Research (NSF EPSCoR) cooperative agreement (grant no. IIA 1208732), ANR-10-LABX-0056,OSUG@2020,Innovative strategies for observing and modelling natural systems(2010), European Project: 1208732(2012), Copernicus GmbH, Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
010504 meteorology & atmospheric sciences
0208 environmental biotechnology 02 engineering and technology mountain forest [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology Atmospheric sciences 01 natural sciences lcsh:Technology Standard deviation lcsh:TD1-1066 Snow Physical Sciences and Mathematics technique and approach lcsh:Environmental technology. Sanitary engineering [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology lcsh:Environmental sciences 0105 earth and related environmental sciences General Environmental Science lcsh:GE1-350 Tree canopy model lcsh:T Empirical modelling lcsh:Geography. Anthropology. Recreation Life Sciences Albedo 15. Life on land 020801 environmental engineering Spatial heterogeneity lcsh:G Earth Sciences General Earth and Planetary Sciences Environmental science Interception Scale (map) |
Zdroj: | Hydrology and Earth System Sciences Hydrology and Earth System Sciences, 2020, 24 (5), pp.2545-2560. ⟨10.5194/hess-24-2545-2020⟩ Wildland Resources Student Research Hydrology and Earth System Sciences, Vol 24, Pp 2545-2560 (2020) T.W. "Doc" Daniel Experimental Forest Hydrology and Earth System Sciences, European Geosciences Union, 2020, 24 (5), pp.2545-2560. ⟨10.5194/hess-24-2545-2020⟩ |
ISSN: | 1607-7938 1027-5606 |
DOI: | 10.5194/hess-24-2545-2020⟩ |
Popis: | Snow interception by the forest canopy controls the spatial heterogeneity of subcanopy snow accumulation leading to significant differences between forested and nonforested areas at a variety of scales. Snow intercepted by the forest canopy can also drastically change the surface albedo. As such, accurately modeling snow interception is of importance for various model applications such as hydrological, weather, and climate predictions. Due to difficulties in the direct measurements of snow interception, previous empirical snow interception models were developed at just the point scale. The lack of spatially extensive data sets has hindered the validation of snow interception models in different snow climates, forest types, and at various spatial scales and has reduced the accurate representation of snow interception in coarse-scale models. We present two novel empirical models for the spatial mean and one for the standard deviation of snow interception derived from an extensive snow interception data set collected in an evergreen coniferous forest in the Swiss Alps. Besides open-site snowfall, subgrid model input parameters include the standard deviation of the DSM (digital surface model) and/or the sky view factor, both of which can be easily precomputed. Validation of both models was performed with snow interception data sets acquired in geographically different locations under disparate weather conditions. Snow interception data sets from the Rocky Mountains, US, and the French Alps compared well to the modeled snow interception with a normalized root mean square error (NRMSE) for the spatial mean of ≤10 % for both models and NRMSE of the standard deviation of ≤13 %. Compared to a previous model for the spatial mean interception of snow water equivalent, the presented models show improved model performances. Our results indicate that the proposed snow interception models can be applied in coarse land surface model grid cells provided that a sufficiently fine-scale DSM is available to derive subgrid forest parameters. |
Databáze: | OpenAIRE |
Externí odkaz: |