Kinetic analysis and optimisation of 18F-rhPSMA-7.3 PET imaging of prostate cancer
Autor: | Anna Kuisma, Simona Malaspina, Mika Scheinin, Ernst J. Postema, Kalle Mattila, Kari K. Kalliokoski, Peter J. Boström, Otto Ettala, Matthew P. Miller, Heikki Minn, Vesa Oikonen |
---|---|
Rok vydání: | 2021 |
Předmět: |
Male
PET/CT Kinetic analysis 030218 nuclear medicine & medical imaging Lesion 03 medical and health sciences Prostate cancer 0302 clinical medicine Prostate Positron Emission Tomography Computed Tomography PSMA medicine Medical imaging Humans Radiology Nuclear Medicine and imaging Lymph node PET-CT business.industry rhPSMA Prostatic Neoplasms General Medicine medicine.disease Kinetics 18F medicine.anatomical_structure Positron-Emission Tomography 030220 oncology & carcinogenesis Original Article Lymph Radiopharmaceuticals medicine.symptom business Nuclear medicine |
Zdroj: | European Journal of Nuclear Medicine and Molecular Imaging |
ISSN: | 1619-7089 1619-7070 |
DOI: | 10.1007/s00259-021-05346-8 |
Popis: | Purpose This phase 1 open-label study evaluated the uptake kinetics of a novel theranostic PET radiopharmaceutical, 18F-rhPSMA-7.3, to optimise its use for imaging of prostate cancer. Methods Nine men, three with high-risk localised prostate cancer, three with treatment-naïve hormone-sensitive metastatic disease and three with castration-resistant metastatic disease, underwent dynamic 45-min PET scanning of a target area immediately post-injection of 300 MBq 18F-rhPSMA-7.3, followed by two whole-body PET/CT scans acquired from 60 and 90 min post-injection. Volumes of interest (VoIs) corresponding to prostate cancer lesions and reference tissues were recorded. Standardised uptake values (SUV) and lesion-to-reference ratios were calculated for 3 time frames: 35–45, 60–88 and 90–118 min. Net influx rates (Ki) were calculated using Patlak plots. Results Altogether, 44 lesions from the target area were identified. Optimal visual lesion detection started 60 min post-injection. The 18F-rhPSMA-7.3 signal from prostate cancer lesions increased over time, while reference tissue signals remained stable or decreased. The mean (SD) SUV (g/mL) at the 3 time frames were 8.4 (5.6), 10.1 (7) and 10.6 (7.5), respectively, for prostate lesions, 11.2 (4.3), 13 (4.8) and 14 (5.2) for lymph node metastases, and 4.6 (2.6), 5.7 (3.1) and 6.4 (3.5) for bone metastases. The mean (SD) lesion-to-reference ratio increases from the earliest to the 2 later time frames were 40% (10) and 59% (9), respectively, for the prostate, 65% (27) and 125% (47) for metastatic lymph nodes and 25% (19) and 32% (30) for bone lesions. Patlak plots from lesion VoIs signified almost irreversible uptake kinetics. Ki, SUV and lesion-to-reference ratio estimates showed good agreement. Conclusion 18F-rhPSMA-7.3 uptake in prostate cancer lesions was high. Lesion-to-background ratios increased over time, with optimal visual detection starting from 60 min post-injection. Thus, 18F-rhPSMA-7.3 emerges as a very promising PET radiopharmaceutical for diagnostic imaging of prostate cancer. Trial Registration NCT03995888 (24 June 2019). |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |