Hopf algebroids associated to Jacobi algebras
Autor: | Ana Rovi |
---|---|
Rok vydání: | 2014 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics Differential Geometry (math.DG) Physics and Astronomy (miscellaneous) Mathematics::K-Theory and Homology Mathematics::Quantum Algebra Mathematics - Quantum Algebra FOS: Mathematics Quantum Algebra (math.QA) Universal enveloping algebra Algebra over a field Quotient Mathematics |
Zdroj: | International Journal of Geometric Methods in Modern Physics. 11:1450092 |
ISSN: | 1793-6977 0219-8878 |
DOI: | 10.1142/s0219887814500923 |
Popis: | We give examples of Lie–Rinehart algebras whose universal enveloping algebra is not a Hopf algebroid either in the sense of Böhm and Szlachányi or in the sense of Lu. These examples are constructed as quotients of a canonical Lie–Rinehart algebra over a Jacobi algebra which does admit an antipode. |
Databáze: | OpenAIRE |
Externí odkaz: |