A Descending Neuron Correlated with the Rapid Steering Maneuvers of Flying Drosophila
Autor: | Ivo G. Ros, Michael H. Dickinson, Bettina Schnell |
---|---|
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Motion Perception Biology Article General Biochemistry Genetics and Molecular Biology Motion (physics) 03 medical and health sciences 0302 clinical medicine Calcium imaging medicine Animals Nervous System Physiological Phenomena Sensory cue Cells Cultured Neurons Behavior Animal fungi Work (physics) Efference copy Electrophysiology Drosophila melanogaster 030104 developmental biology medicine.anatomical_structure Flight Animal Visual Perception Reflex Neuron General Agricultural and Biological Sciences Neuroscience 030217 neurology & neurosurgery |
Zdroj: | Current Biology. 27:1200-1205 |
ISSN: | 0960-9822 |
DOI: | 10.1016/j.cub.2017.03.004 |
Popis: | To navigate through the world, animals must stabilize their path against disturbances and change direction to avoid obstacles and to search for resources [1 ; 2]. Locomotion is thus guided by sensory cues but also depends on intrinsic processes, such as motivation and physiological state. Flies, for example, turn with the direction of large-field rotatory motion, an optomotor reflex that is thought to help them fly straight [3; 4 ; 5]. Occasionally, however, they execute fast turns, called body saccades, either spontaneously or in response to patterns of visual motion such as expansion [6; 7 ; 8]. These turns can be measured in tethered flying Drosophila [ 3; 4 ; 9], which facilitates the study of underlying neural mechanisms. Whereas there is evidence for an efference copy input to visual interneurons during saccades [10], the circuits that control spontaneous and visually elicited saccades are not well known. Using two-photon calcium imaging and electrophysiological recordings in tethered flying Drosophila, we have identified a descending neuron whose activity is correlated with both spontaneous and visually elicited turns during tethered flight. The cell’s activity in open- and closed-loop experiments suggests that it does not underlie slower compensatory responses to horizontal motion but rather controls rapid changes in flight path. The activity of this neuron can explain some of the behavioral variability observed in response to visual motion and appears sufficient for eliciting turns when artificially activated. This work provides an entry point into studying the circuits underlying the control of rapid steering maneuvers in the fly brain. |
Databáze: | OpenAIRE |
Externí odkaz: |