Mathematical Simulation of Forest Fuel Pyrolysis in One-Dimensional Statement Taking into Account Soot Formation
Autor: | Nikolay V. Baranovskiy, Viktoriya Andreevna Kirienko |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
soot formation
Bioengineering TP1-1185 medicine.disease_cause пожары Mass transfer medicine ignition Chemical Engineering (miscellaneous) Physics::Chemical Physics QD1-999 пиролиз Mathematical model Process Chemistry and Technology Chemical technology Finite difference method Mechanics лесное топливо Thermal conduction pyrolysis mathematical simulation Soot Nonlinear system Chemistry Environmental science зажигание Pyrolysis Intensity (heat transfer) математическое моделирование forest fuel forest fire |
Zdroj: | Processes, Vol 9, Iss 1616, p 1616 (2021) Processes Volume 9 Issue 9 |
ISSN: | 2227-9717 |
Popis: | Pyrolysis (thermal decomposition) is considered as the most important stage of a forest fire before direct forest fuel ignition. This process is accompanied by soot particle formation. Such particles have a negative impact on public health in the vicinity of forest fires. The purpose of this article was to investigate the heat and mass transfer process occurring in a typical forest fuel element (birch leaf). The pyrolysis and soot formation processes were taken into account, and various forest fire scenarios were considered. Computational experiments were carried out using the high-level programming language Delphi. Heat and mass transfer processes were described by nonlinear non-stationary differential heat conduction equations with corresponding initial and boundary conditions. The differential equations were solved by the finite difference method. Nonlinearity was resolved using a simple iteration. The main results of the research were (1) physical and mathematical models proposed for modeling forest fuel pyrolysis, taking into account soot formation and conditions corresponding to various forest fires (2) a computer program coded in the high-level programming language Delphi (3) the obtained temperature distributions over leaf thickness (4) volume fractions obtained for various components dependent on time and space coordinates. The qualitative analysis of the dependencies showed that the temperature distributions in the birch leaf structure are similar for all forest fire types and differ only in absolute value. The intensity of the soot formation process directly depends on the forest fire type. The presented results should be useful in predicting and assessing forest fire danger, including near the facilities of the Russian Railways. |
Databáze: | OpenAIRE |
Externí odkaz: |