Mathematical Modeling of COVID-19 Dynamics under Two Vaccination Doses and Delay Effects

Autor: ABRAHAM JOSE ARENAS TAWIL, Gabriel Eduardo Sepúlveda Morelo, Gilberto Gonzalez-Parra
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics; Volume 11; Issue 2; Pages: 369
ISSN: 2227-7390
DOI: 10.3390/math11020369
Popis: The aim of this paper is to investigate the qualitative behavior of the COVID-19 pandemic under an initial vaccination program. We constructed a mathematical model based on a nonlinear system of delayed differential equations. The time delay represents the time that the vaccine takes to provide immune protection against SARS-CoV-2. We investigate the impact of transmission rates, vaccination, and time delay on the dynamics of the constructed system. The model was developed for the beginning of the implementation of vaccination programs to control the COVID-19 pandemic. We perform a stability analysis at the equilibrium points and show, using methods of stability analysis for delayed systems, that the system undergoes a Hopf bifurcation. The theoretical results reveal that under some conditions related to the values of the parameters and the basic reproduction number, the system approaches the disease-free equilibrium point, but if the basic reproduction number is larger than one, the system approaches endemic equilibrium and SARS-CoV-2 cannot be eradicated. Numerical examples corroborate the theoretical results and the methodology. Finally, conclusions and discussions about the results are presented.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje