On Cullen numbers which are both Riesel and Sierpiński numbers

Autor: Florian Luca, Marcos J. González, Pedro Berrizbeitia, V. Janitzio Mejía Huguet, J.G. Fernandes
Jazyk: angličtina
Předmět:
Zdroj: Journal of Number Theory. (12):2836-2841
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2012.05.021
Popis: We describe an algorithm to determine whether or not a given system of congruences is satisfied by Cullen numbers. We use this algorithm to prove that there are infinitely many Cullen numbers which are both Riesel and Sierpinski. (Such numbers should be discarded if you are searching prime numbers with Prothʼs theorem.)
Databáze: OpenAIRE