Visible and extended near-infrared multispectral imaging for skin cancer diagnosis

Autor: Meritxell Vilaseca, Santiago Royo, Josep Malvehy, Miguel Ares, Laura Rey-Barroso, Francisco J. Burgos-Fernández, Xana Delpueyo, Susana Puig
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Òptica i Optometria, Universitat Politècnica de Catalunya. GREO - Grup de Recerca en Enginyeria Òptica
Předmět:
Skin Neoplasms
Light
Infrared
Multispectral image
01 natural sciences
Biochemistry
Analytical Chemistry
Multispectral imaging
030207 dermatology & venereal diseases
0302 clinical medicine
multispectral imaging
Image Processing
Computer-Assisted

Skin cancer
Instrumentation
Melanoma
skin cancer
Imatges infraroges
Optical Imaging
Detectors
Atomic and Molecular Physics
and Optics

Skin diseases
Diagnòstic per la imatge
infrared
Principal component analysis
Diagnostic imaging
Skin lesion
Algorithms
Infrared detectors
Materials science
Infrared Rays
Article
010309 optics
InGaAs camera
03 medical and health sciences
Optics
Skin--Cancer
0103 physical sciences
melanoma
medicine
Humans
Electrical and Electronic Engineering
Càncer de pell
business.industry
Near-infrared spectroscopy
Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo [Àrees temàtiques de la UPC]
medicine.disease
Support vector machine
Ciències de la salut::Medicina::Dermatologia [Àrees temàtiques de la UPC]
Malalties de la pell
Pell -- Càncer
Classification methods
business
Detectors de raigs infraroigs
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de la UB
Universidad de Barcelona
Sensors (Basel, Switzerland)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Sensors; Volume 18; Issue 5; Pages: 1441
Popis: With the goal of diagnosing skin cancer in an early and noninvasive way, an extended near infrared multispectral imaging system based on an InGaAs sensor with sensitivity from 995 nm to 1613 nm was built to evaluate deeper skin layers thanks to the higher penetration of photons at these wavelengths. The outcomes of this device were combined with those of a previously developed multispectral system that works in the visible and near infrared range (414 nm–995 nm). Both provide spectral and spatial information from skin lesions. A classification method to discriminate between melanomas and nevi was developed based on the analysis of first-order statistics descriptors, principal component analysis, and support vector machine tools. The system provided a sensitivity of 78.6% and a specificity of 84.6%, the latter one being improved with respect to that offered by silicon sensors.
Databáze: OpenAIRE