Cooperative Traffic Signal Control with Traffic Flow Prediction in Multi-Intersection

Autor: Dae-ho Kim, Ok-Ran Jeong
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Sensors, Vol 20, Iss 1, p 137 (2019)
Sensors
Volume 20
Issue 1
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Popis: As traffic congestion in cities becomes serious, intelligent traffic signal control has been actively studied. Deep Q-Network (DQN), a representative deep reinforcement learning algorithm, is applied to various domains from fully-observable game environment to traffic signal control. Due to the effective performance of DQN, deep reinforcement learning has improved speeds and various DQN extensions have been introduced. However, most traffic signal control researches were performed at a single intersection, and because of the use of virtual simulators, there are limitations that do not take into account variables that affect actual traffic conditions. In this paper, we propose a cooperative traffic signal control with traffic flow prediction (TFP-CTSC) for a multi-intersection. A traffic flow prediction model predicts future traffic state and considers the variables that affect actual traffic conditions. In addition, for cooperative traffic signal control in multi-intersection, each intersection is modeled as an agent, and each agent is trained to take best action by receiving traffic states from the road environment. To deal with multi-intersection efficiently, agents share their traffic information with other adjacent intersections. In the experiment, TFP-CTSC is compared with existing traffic signal control algorithms in a 4 ×
4 intersection environment. We verify our traffic flow prediction and cooperative method.
Databáze: OpenAIRE