Internal shortest absent word queries in constant time and linear space

Autor: Golnaz Badkobeh, Panagiotis Charalampopoulos, Dmitry Kosolobov, Solon P. Pissis
Přispěvatelé: Goldsmiths, University of London (Goldsmiths College), University of London [London], Interdisciplinary Center Herzliya (IDC), Ural Federal University [Ekaterinburg] (UrFU), Centrum Wiskunde & Informatica (CWI), Vrije Universiteit Amsterdam [Amsterdam] (VU), Equipe de recherche européenne en algorithmique et biologie formelle et expérimentale (ERABLE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Department of Computing, Goldsmiths, University of London, The Interdisciplinary Center Herzliya, Israel, Bioinformatics, AIMMS, Bio Informatics (IBIVU), Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: CPM 2021-32nd Annual Symposium on Combinatorial Pattern Matching
CPM 2021-32nd Annual Symposium on Combinatorial Pattern Matching, Jul 2021, Wroclaw, Poland. pp.1-13
Badkobeh, G, Charalampopoulos, P, Kosolobov, D & Pissis, S P 2022, ' Internal shortest absent word queries in constant time and linear space ', Theoretical Computer Science, vol. 922, pp. 271-282 . https://doi.org/10.1016/j.tcs.2022.04.029
32nd Annual Symposium on Combinatorial Pattern Matching (CPM)
32nd Annual Symposium on Combinatorial Pattern Matching (CPM), 2021, Wroclaw, Poland
Theoretical Computer Science
Theoretical Computer Science, 922, 271-282. Elsevier
NARCIS
arXiv.org e-Print Archive
Hal-Diderot
Mémoires en Sciences de l'Information et de la Communication
Institutional repository of Ural Federal University named after the first President of Russia B.N.Yeltsin
Vrije Universiteit Amsterdam (VU Amsterdam)-Institutional Repository
INRIA a CCSD electronic archive server
Datacite
ORCID
Theoretical Computer Science, 922, 271-282
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2022.04.029
Popis: Comment: 13 pages, 1 figure, 4 tables
Given a string $T$ of length $n$ over an alphabet $\Sigma\subset \{1,2,\ldots,n^{O(1)}\}$ of size $\sigma$, we are to preprocess $T$ so that given a range $[i,j]$, we can return a representation of a shortest string over $\Sigma$ that is absent in the fragment $T[i]\cdots T[j]$ of $T$. We present an $O(n)$-space data structure that answers such queries in constant time and can be constructed in $O(n\log_\sigma n)$ time.
Databáze: OpenAIRE