Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries

Autor: Jiangwei Wang, Jiale Qu, Lin Guo, Miao Hu, Yujie Zhu, Juan Zhang, Qianfan Zhang, Juzhe Liu, Meiying Feng, Liang Zeng, Youran Hong, Leqing Deng, Xiaogang Niu
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
Nature Communications
ISSN: 2041-1723
Popis: Potassium-ion batteries (KIBs) are promising electrochemical energy storage systems because of their low cost and high energy density. However, practical exploitation of KIBs is hampered by the lack of high-performance cathode materials. Here we report a potassium manganese hexacyanoferrate (K2Mn[Fe(CN)6]) material, with a negligible content of defects and water, for efficient high-voltage K-ion storage. When tested in combination with a K metal anode, the K2Mn[Fe(CN)6]-based electrode enables a cell specific energy of 609.7 Wh kg−1 and 80% capacity retention after 7800 cycles. Moreover, a K-ion full-cell consisting of graphite and K2Mn[Fe(CN)6] as anode and cathode active materials, respectively, demonstrates a specific energy of 331.5 Wh kg−1, remarkable rate capability, and negligible capacity decay for 300 cycles. The remarkable electrochemical energy storage performances of the K2Mn[Fe(CN)6] material are attributed to its stable frameworks that benefit from the defect-free structure.
Potassium-ion battery is a promising candidate for post-Li-ion energy storage but the lack of cathode materials hinders practical exploitation. Here the authors investigate defect-free potassium manganese hexacyanoferrate as cathode active material for high energy and long lifespan K-based cells.
Databáze: OpenAIRE