Non-meager free sets and independent families

Autor: Dušan Repovš, Andrea Medini, Lyubomyr Zdomskyy
Rok vydání: 2015
Předmět:
Zdroj: Proceedings of the American Mathematical Society, vol. 145, no. 9, pp. 4061-4073, 2017.
ISSN: 0002-9939
DOI: 10.48550/arxiv.1508.00124
Popis: Our main result is that, given a collection $\mathcal{R}$ of meager relations on a Polish space $X$ such that $|\mathcal{R}|\leq\omega$, there exists a dense Baire subspace $F$ of $X$ (equivalently, a nowhere meager subset $F$ of $X$) such that $F$ is $R$-free for every $R\in\mathcal{R}$. This generalizes a recent result of Banakh and Zdomskyy. As an application, we show that there exists a non-meager independent family on $\omega$, and define the corresponding cardinal invariant. Furthermore, assuming Martin's Axiom for countable posets, our result can be strengthened by substituting "$|\mathcal{R}|\leq\omega$" with "$|\mathcal{R}
Comment: 13 pages
Databáze: OpenAIRE