Dopant-Free Hole-Transport Materials with Germanium Compounds Bearing Pseudohalide and Chalcogenide Moieties for Perovskite Solar Cells
Autor: | Tatiana Soto-Montero, Cristopher Camacho, Andrea Soto-Navarro, Leslie W. Pineda, Desiré Molina, Natalie Flores-Díaz, Andrés Lizano-Villalobos, Anders Hagfeldt |
---|---|
Rok vydání: | 2020 |
Předmět: |
Aromatic compounds
base adduct Chalcogenide perovskites chemistry.chemical_element monomeric germanium(ii) Germanium chemistry 010402 general chemistry 01 natural sciences law.invention Inorganic Chemistry Germanium compounds chemistry.chemical_compound thermal-properties law Physical and Theoretical Chemistry Perovskite (structure) selective contacts Bearing (mechanical) Dopant 010405 organic chemistry Chemistry stability Hydrocarbons 0104 chemical sciences germanium highly efficient Chemical engineering visual_art Electronic component visual_art.visual_art_medium charge-transfer porphyrin performance |
Zdroj: | Inorg. Chem. 2020, 59, 20, 15154–15166 Kérwá Universidad de Costa Rica instacron:UCR |
ISSN: | 1520-510X 0020-1669 |
Popis: | Hole-transport materials (HTMs) are key electronic components for the functioning of perovskite solar cells (PSCs) as they extract the photogenerated holes from the perovskite to be transported subsequently to the back electrode while minimizing the loss from electron recombination. Herein, we report the synthesis and characterization of novel germanium-based compounds with [{HC(CMeNAr)2}GeNCS] (2), [{HC(CMeNAr)2}Ge(S)NCS] (3), and [{HC(CMeNAr)2}Ge(Se)NCS] (4) compositions, with Ar = 2,6-iPr2C6H3 and the photovoltaic performance of 3 and 4 that is the same as for HTM in PSC. All compounds displayed excellent thermal properties and an appropriate alignment of energy levels for the perovskite with maximum optical absorption in the near-UV region. As revealed by space-charge limited-current (SCLC) measurements, compounds 3 and 4 have competing hole mobilities of about 1.37 × 10–4 and 4.88 × 10–4 cm2 V–1 s–1, respectively. Upon assessing PSC devices using 3 and 4 with triple-cation perovskite absorber Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3, the power conversion efficiencies (PCEs) were about 13.03 and 9.23%, respectively, both without doping and additives, and were compared with benchmark HTM spiro-OMeTAD (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene). Quantum chemical calculations with DFT showed that the optoelectronic properties are strongly influenced by the combined contributions of the germanium atom, the pseudohalide moiety (NCS–), and chalcogenides (S2– or Se2–). Fine tuning the electronic properties of germanium is thus a good strategy for the targeted synthesis of potential conducting molecules in PSCs. UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Electroquímica y Energía Química (CELEQ) UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Química |
Databáze: | OpenAIRE |
Externí odkaz: |