ASYMPTOTIC STABILITY OF VISCOUS SHOCKS IN THE MODULAR BURGERS EQUATION

Autor: Pascal Poullet, Uyen Le, Dmitry E. Pelinovsky
Přispěvatelé: McMaster University [Hamilton, Ontario], Department of Mathematics and Statistics, McMaster University, Hamilton, Canada, Laboratoire de Mathématiques Informatique et Applications (LAMIA), Université des Antilles et de la Guyane (UAG), Poullet, Pascal
Jazyk: angličtina
Rok vydání: 2021
Předmět:
General Physics and Astronomy
FOS: Physical sciences
Dynamical Systems (math.DS)
Pattern Formation and Solitons (nlin.PS)
Space (mathematics)
System of linear equations
01 natural sciences
010305 fluids & plasmas
Mathematics - Analysis of PDEs
modular Burgers equation
Exponential stability
Stability theory
0103 physical sciences
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
0101 mathematics
Mathematics - Dynamical Systems
[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]
Mathematical Physics
Mathematics
traveling fronts
asymptotic stability
Applied Mathematics
010102 general mathematics
Mathematical analysis
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]
Nonlinear Sciences - Pattern Formation and Solitons
Exponential function
Burgers' equation
Nonlinear system
Gravitational singularity
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Analysis of PDEs (math.AP)
Zdroj: Nonlinearity
Nonlinearity, IOP Publishing, In press
HAL
ISSN: 0951-7715
1361-6544
Popis: Dynamics of viscous shocks is considered in the modular Burgers equation, where the time evolution becomes complicated due to singularities produced by the modular nonlinearity. We prove that the viscous shocks are asymptotically stable under odd and general perturbations. For the odd perturbations, the proof relies on the reduction of the modular Burgers equation to a linear diffusion equation on a half-line. For the general perturbations, the proof is developed by converting the time-evolution problem to a system of linear equations coupled with a nonlinear equation for the interface position. Exponential weights in space are imposed on the initial data of general perturbations in order to gain the asymptotic decay of perturbations in time. We give numerical illustrations of asymptotic stability of the viscous shocks under general perturbations.
Comment: 35 pages; 2 figures
Databáze: OpenAIRE