On the Cohomology of the Stover Surface
Autor: | Amir Džambić, Xavier Roulleau |
---|---|
Přispěvatelé: | Christian-Albrechts-Universität zu Kiel (CAU), Laboratoire de Mathématiques et Applications (LMA-Poitiers), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Automorphism group General Mathematics Lagrangian surfaces 010102 general mathematics Mathematical analysis ball quotient surfaces 01 natural sciences Cohomology Hurwitz ball quotients 0103 physical sciences 010307 mathematical physics Ball (mathematics) [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] 0101 mathematics 14J29 Stover Quotient Mathematics |
Zdroj: | Experimental Mathematics Experimental Mathematics, 2017, 26 (4), pp.490-495. ⟨10.1080/10586458.2016.1205533⟩ Experimental Mathematics, Taylor & Francis, 2017, 26 (4), pp.490-495. ⟨10.1080/10586458.2016.1205533⟩ |
ISSN: | 1058-6458 |
DOI: | 10.1080/10586458.2016.1205533⟩ |
Popis: | 7 pages, Comments welcome; International audience; We study a surface discovered by Stover which is the surface with minimal Euler number and maximal automorphism group among smooth arithmetic ball quotient surfaces. We study the natural map $\wedge^{2}H^{1}(S,\mathbb{C})\to H^{2}(S,\mathbb{C})$ and we discuss the problem related to the so-called Lagrangian surfaces. We obtain that this surface $S$ has maximal Picard number and has no higher genus fibrations. We compute that its Albanese variety $A$ is isomorphic to $(\mathbb{C}/\mathbb{Z}[\alpha])^{7}$, for $\alpha=e^{2i\pi/3}$. |
Databáze: | OpenAIRE |
Externí odkaz: |