On the Cohomology of the Stover Surface

Autor: Amir Džambić, Xavier Roulleau
Přispěvatelé: Christian-Albrechts-Universität zu Kiel (CAU), Laboratoire de Mathématiques et Applications (LMA-Poitiers), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Experimental Mathematics
Experimental Mathematics, 2017, 26 (4), pp.490-495. ⟨10.1080/10586458.2016.1205533⟩
Experimental Mathematics, Taylor & Francis, 2017, 26 (4), pp.490-495. ⟨10.1080/10586458.2016.1205533⟩
ISSN: 1058-6458
DOI: 10.1080/10586458.2016.1205533⟩
Popis: 7 pages, Comments welcome; International audience; We study a surface discovered by Stover which is the surface with minimal Euler number and maximal automorphism group among smooth arithmetic ball quotient surfaces. We study the natural map $\wedge^{2}H^{1}(S,\mathbb{C})\to H^{2}(S,\mathbb{C})$ and we discuss the problem related to the so-called Lagrangian surfaces. We obtain that this surface $S$ has maximal Picard number and has no higher genus fibrations. We compute that its Albanese variety $A$ is isomorphic to $(\mathbb{C}/\mathbb{Z}[\alpha])^{7}$, for $\alpha=e^{2i\pi/3}$.
Databáze: OpenAIRE