An Analytical Approximate Solution for the Quasi-Steady State Michaelis-Menten Problem

Autor: Hector Vazquez-Leal, L. Gil-Adalid, Victor Manuel Jimenez-Fernandez, J. Huerta-Chua, J. E. Pretelin-Canela, Agustín L. Herrera-May, R. Castaneda-Sheissa, Uriel Filobello-Nino
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Discrete Dynamics in Nature and Society, Vol 2019 (2019)
ISSN: 1026-0226
DOI: 10.1155/2019/8901508
Popis: This article utilizes perturbation method (PM) to find an analytical approximate solution for the Quasi-Steady-State Michaelis-Menten problem. From the comparison of Figures and absolute error values, between approximate and numerical solutions, it is shown that the obtained solutions are accurate, and therefore, they explain the general behaviour of the Michaelis-Menten mechanism.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje
načítá se...