An Analytical Approximate Solution for the Quasi-Steady State Michaelis-Menten Problem
Autor: | Hector Vazquez-Leal, L. Gil-Adalid, Victor Manuel Jimenez-Fernandez, J. Huerta-Chua, J. E. Pretelin-Canela, Agustín L. Herrera-May, R. Castaneda-Sheissa, Uriel Filobello-Nino |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Article Subject
lcsh:Mathematics Quantitative Biology::Molecular Networks Steady State theory 010103 numerical & computational mathematics lcsh:QA1-939 01 natural sciences Michaelis–Menten kinetics Quantitative Biology::Cell Behavior 010101 applied mathematics Quantitative Biology::Subcellular Processes Quantitative Biology::Quantitative Methods Approximation error Modeling and Simulation Applied mathematics 0101 mathematics Perturbation method Approximate solution Mathematics |
Zdroj: | Discrete Dynamics in Nature and Society, Vol 2019 (2019) |
ISSN: | 1026-0226 |
DOI: | 10.1155/2019/8901508 |
Popis: | This article utilizes perturbation method (PM) to find an analytical approximate solution for the Quasi-Steady-State Michaelis-Menten problem. From the comparison of Figures and absolute error values, between approximate and numerical solutions, it is shown that the obtained solutions are accurate, and therefore, they explain the general behaviour of the Michaelis-Menten mechanism. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |
načítá se...