The effect of temperature on membrane hydraulic conductivity

Autor: Locksley E. McGann, Janet A.W. Elliott, Heidi Y. Elmoazzen
Rok vydání: 2002
Předmět:
Zdroj: Cryobiology. 45(1)
ISSN: 0011-2240
Popis: The objective of this study was to use the temperature dependence of water permeability to suggest the physical mechanisms of water transport across membranes of osmotically slowly responding cells and to demonstrate that insight into water transport mechanisms in these cells may be gained from easily performed experiments using an electronic particle counter. Osmotic responses of V-79W Chinese hamster fibroblast cells were measured in hypertonic solutions at various temperatures and the membrane hydraulic conductivity was determined. The results were fit with the general Arrhenius equation with two free parameters, and also fit with two specific membrane models each having only one free parameter. Data from the literature including that for human bone marrow stem cells, hamster pancreatic islets, and bovine articular cartilage chondrocytes were also examined. The results indicated that the membrane models could be used in conjunction with measured permeability data at different temperatures to investigate the method of water movement across various cell membranes. This approach for slower responding cells challenges the current concept that the presence of aqueous pores is always accompanied by an osmotic water permeability value, P(f)>0.01 cm/s. The possibility of water transport through aqueous pores in lower-permeability cells is proposed.
Databáze: OpenAIRE