Finite Morse index solutions of the Hénon Lane–Emden equation
Autor: | Cherif Zaidi, Abdellaziz Harrabi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Index (economics)
Mathematics::Analysis of PDEs Monotonic function Space (mathematics) Morse code Stable or finite Morse index solutions 01 natural sciences law.invention Identity (mathematics) law 0103 physical sciences Discrete Mathematics and Combinatorics Applied mathematics Monotonicity formula 0101 mathematics Lane–Emden equation Mathematics Sequence Applied Mathematics lcsh:Mathematics 010102 general mathematics lcsh:QA1-939 Blowing down sequence Blowing down Liouville-type theorem 010307 mathematical physics Analysis |
Zdroj: | Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-29 (2019) |
DOI: | 10.1186/s13660-019-2234-0 |
Popis: | In this paper, we are concerned with Liouville-type theorems of the Hénon Lane–Emden triharmonic equations in whole space. We prove Liouville-type theorems for solutions belonging to one of the following classes: stable solutions and finite Morse index solutions (whether positive or sign-changing). Our proof is based on a combination of the Pohozaev-type identity, monotonicity formula of solutions and a blowing down sequence. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |