Finite Morse index solutions of the Hénon Lane–Emden equation

Autor: Cherif Zaidi, Abdellaziz Harrabi
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-29 (2019)
DOI: 10.1186/s13660-019-2234-0
Popis: In this paper, we are concerned with Liouville-type theorems of the Hénon Lane–Emden triharmonic equations in whole space. We prove Liouville-type theorems for solutions belonging to one of the following classes: stable solutions and finite Morse index solutions (whether positive or sign-changing). Our proof is based on a combination of the Pohozaev-type identity, monotonicity formula of solutions and a blowing down sequence.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje