A Monte Carlo dose calculation system for ophthalmic brachytherapy based on a realistic eye model
Autor: | Alejandro Bertolet Reina, Héctor Miras del Río, José Antonio Terrón León, Antonio Ortiz Lora |
---|---|
Rok vydání: | 2021 |
Předmět: |
Materials science
Dose calculation Phantoms Imaging medicine.medical_treatment Eye Neoplasms Radiotherapy Planning Computer-Assisted Monte Carlo method Reference data (financial markets) Brachytherapy Radiotherapy Dosage General Medicine law.invention Lens (optics) Homogeneous law Histogram medicine Humans Dose reduction Monte Carlo Method Biomedical engineering |
Zdroj: | Medical physicsREFERENCES. 48(8) |
ISSN: | 2473-4209 |
Popis: | Purpose There is a growing trend towards the adoption of model-based calculation algorithms (MBDCAs) for brachytherapy dose calculations which can properly handle media and source/applicator heterogeneities. However, most of dose calculations in ocular plaque therapy are based on homogeneous water media and standard in-silico ocular phantoms, ignoring non-water equivalency of the anatomic tissues and heterogeneities in applicators and patient anatomy. In this work, we introduce EyeMC, a Monte Carlo (MC) model-based calculation algorithm for ophthalmic plaque brachytherapy using realistic and adaptable patient-specific eye geometries and materials. Methods We used the MC code PENELOPE in EyeMC to model Bebig IsoSeed I25.S16 seeds in COMS plaques and 106 Ru/106 Rh applicators that are coupled onto a customizable eye model with realistic geometry and composition. To significantly reduce calculation times, we integrated EyeMC with CloudMC, a cloud computing platform for radiation therapy calculations. EyeMC is equipped with an evaluation module that allows the generation of isodose distributions, dose-volume histograms, and comparisons with Plaque Simulator three-dimensional dose distribution. We selected a sample of patients treated with 125 I and 106 Ru isotopes in our institution, covering a variety of different type of plaques, tumor sizes, and locations. Results from EyeMC were compared to the original plan calculated by the TPS Plaque Simulation, studying the influence of heterogeneous media composition as well. Results EyeMC calculations for Ru plaques agreed well with manufacturer's reference data and data of MC simulations from Hermida et al. (2013). Significant deviations, up to 20%, were only found in lateral profiles for notched plaques. As expected, media composition significantly affected estimated doses to different eye structures, especially in the 125 I cases evaluated. Dose to sclera and lens were found to be about 12% lower when considering real media, while average dose to tumor was 9% higher. 106 Ru cases presented a 1%-3% dose reduction in all structures using real media for calculation, except for the lens, which showed an average dose 7.6% lower than water-based calculations. Comparisons with Plaque Simulator calculations showed large differences in dose to critical structures for 106 Ru notched plaques. 125 I cases presented significant and systematic dose deviations when using the default calculation parameters from Plaque Simulator version 5.3.8., which were corrected when using calculation parameters from a custom physics model for carrier-attenuation and air-interface correction functions. Conclusions EyeMC is a MC calculation system for ophthalmic brachytherapy based on a realistic and customizable eye-tumor model which includes the main eye structures with their real composition. Integrating this tool into a cloud computing environment allows to perform high-precision MC calculations of ocular plaque treatments in short times. The observed variability in eye anatomy among the selected cases justifies the use of patient-specific models. |
Databáze: | OpenAIRE |
Externí odkaz: |