Concept learning consistency under three‑way decision paradigm

Autor: Gonzalo A. Aranda-Corral, Joaquín Borrego-Díaz, Juan Galán-Páez
Přispěvatelé: Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla. TIC-137: Lógica, Computación e Ingeniería del Conocimiento, Agencia Estatal de Investigación. España
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: Concept Mining is one of the main challenges both in Cognitive Computing and in Machine Learning. The ongoing improvement of solutions to address this issue raises the need to analyze whether the consistency of the learning process is preserved. This paper addresses a particular problem, namely, how the concept mining capability changes under the reconsideration of the hypothesis class. The issue will be raised from the point of view of the so-called Three-Way Decision (3WD) paradigm. The paradigm provides a sound framework to reconsider decision-making processes, including those assisted by Machine Learning. Thus, the paper aims to analyze the influence of 3WD techniques in the Concept Learning Process itself. For this purpose, we introduce new versions of the Vapnik-Chervonenkis dimension. Likewise, to illustrate how the formal approach can be instantiated in a particular model, the case of concept learning in (Fuzzy) Formal Concept Analysis is considered.
This work is supported by State Investigation Agency (Agencia Estatal de Investigación), project PID2019-109152GB-100/AEI/10.13039/501100011033. We acknowledge the reviewers for their suggestions and guidance on additional references that have enriched our paper. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Databáze: OpenAIRE