Thermo-Physical Properties of HR3C and P92 Steels at High-Temperature
Autor: | Fernando Pedraza, Gilles Bonnet, Germain Boissonnet |
---|---|
Přispěvatelé: | Laboratoire des Sciences de l'Ingénieur pour l'Environnement - UMR 7356 (LaSIE), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Université de La Rochelle (ULR) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
density
Materials science thermal diffusivity 02 engineering and technology [CHIM.MATE]Chemical Sciences/Material chemistry 021001 nanoscience & nanotechnology 7. Clean energy [SPI]Engineering Sciences [physics] 020303 mechanical engineering & transports 0203 mechanical engineering thermal conductivity ferritic-martensitic steel specific heat capacity 0210 nano-technology austenitic steel |
Zdroj: | Journal of Materials and Applications Journal of Materials and Applications, OJS/PKP, 2019, 8 (2), pp.59-64. ⟨10.32732/jma.2019.8.2.59⟩ Journal of Materials and Applications, OJS/PKP, 2019, 8 (2), ⟨10.32732/jma.2019.8.2.59⟩ |
ISSN: | 2051-7742 |
DOI: | 10.32732/jma.2019.8.2.59⟩ |
Popis: | International audience; Austenitic HR3C and ferritic-martensitic P92 steels are the materials of interest from a mechanical standpoint for the manufacturing of thermal exchangers of the next generation of steam power plants. In order to evaluate their capacity to transfer heat, thermal conductivity calculations have been conducted through the measurements of thermal diffusivity, specific heat capacity and density. It will be shown that the heat capacity, density, thermal expansion coefficient and thermal diffusivity evolve continuously with temperature in the HR3C material but not in the P92 steel. The heterogeneous thermal behaviour appears to be associated with its ferromagnetic transition rather than to the microstructural evolution. Nevertheless, the results for both steels did not exhibit significant differences between thermal conductivities at the intended temperature of service. |
Databáze: | OpenAIRE |
Externí odkaz: |