Identification by deuterium diffusion of a nitrogen-related deep donor preventing the p-type doping of ZnO
Autor: | François Jomard, Said Hassani, Christian Morhain, J. Chevallier, I. Stenger, Jean-Michel Chauveau, N. Temahuki, Julien Barjon, Alain Lusson |
---|---|
Přispěvatelé: | Groupe d'Etude de la Matière Condensée (GEMAC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA) |
Rok vydání: | 2021 |
Předmět: |
010302 applied physics
Condensed Matter - Materials Science Materials science Physics and Astronomy (miscellaneous) Diffusion Analytical chemistry Materials Science (cond-mat.mtrl-sci) FOS: Physical sciences chemistry.chemical_element 02 engineering and technology Radius Trapping 021001 nanoscience & nanotechnology 01 natural sciences Nitrogen Secondary ion mass spectrometry Deuterium chemistry 0103 physical sciences [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] 0210 nano-technology Penetration depth Molecular beam epitaxy |
Zdroj: | Applied Physics Letters Applied Physics Letters, American Institute of Physics, 2021, 118 (10), ⟨10.1063/5.0044373⟩ |
ISSN: | 1077-3118 0003-6951 |
Popis: | International audience; Deuterium diffusion is investigated in nitrogen-doped homoepitaxial ZnO layers. The samples were grown under slightly Zn-rich growth conditions by plasma-assisted molecular beam epitaxy on m-plane ZnO substrates and have a nitrogen content [N] varied up to 5 × 1018 at cm-3 as measured by secondary ion mass spectrometry (SIMS). All were exposed to a radio frequency deuterium plasma during 1 h at room temperature. Deuterium diffusion is observed in all epilayers, while its penetration depth decreases as the nitrogen concentration increases. This is strong evidence of a diffusion mechanism limited by the trapping of deuterium on a nitrogen-related trap. The SIMS profiles are analyzed using a two-trap model including a shallow trap, associated with a fast diffusion, and a deep trap, related to nitrogen. The capture radius of the nitrogen-related trap is determined to be 20 times smaller than the value expected for nitrogen-deuterium pairs formed by coulombic attraction between D+ and nitrogen-related acceptors. The (N2)O deep donor is proposed as the deep trapping site for deuterium and accounts well for the small capture radius and the observed photoluminescence quenching and recovery after deuteration of the ZnO:N epilayers. It is also found that this defect is by far the N-related defect with the highest concentration in the studied samples. |
Databáze: | OpenAIRE |
Externí odkaz: |