Discovering urban and country dynamics from mobile phone data with spatial correlation patterns

Autor: Thomas Couronné, Barbara Furletti, Mirco Nanni, Roberto Trasarti, Cezary Ziemlicki, Fosca Giannotti, Ana-Maria Olteanu-Raimond, Zbigniew Smoreda
Přispěvatelé: Laboratoire des Sciences et Technologies de l'Information Géographique (LaSTIG), École nationale des sciences géographiques (ENSG), Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Institut National de l'Information Géographique et Forestière [IGN] (IGN)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Telecommunications Policy
Telecommunications Policy, Elsevier, 2015, 39 (3-4), pp.347-362. ⟨10.1016/j.telpol.2013.12.002⟩
Telecommunications policy (2014). doi:10.1016/j.telpol.2013.12.002
info:cnr-pdr/source/autori:Trasarti R.; Olteanu-Raimond A.; Nanni M.; Couronné T.; Furletti B.; Giannotti F.; Smoreda Z.; Ziemlicki C./titolo:Discovering urban and country dynamics from mobile phone data with spatial correlation patterns/doi:10.1016%2Fj.telpol.2013.12.002/rivista:Telecommunications policy/anno:2014/pagina_da:/pagina_a:/intervallo_pagine:/volume
NetMob 2013-Third International Conference on the Analysis of Mobile Phone Datasets, pp. 10–12, MIT Media Lab, Cambridge, USA, 1-3 May 2013
info:cnr-pdr/source/autori:Trasarti R., Olteanu-Raimond A., Nanni M., Couronné T., Furletti B., Giannotti F., Smoreda Z., Ziemlicki C./congresso_nome:NetMob 2013-Third International Conference on the Analysis of Mobile Phone Datasets/congresso_luogo:MIT Media Lab, Cambridge, USA/congresso_data:1-3 May 2013/anno:2013/pagina_da:10/pagina_a:12/intervallo_pagine:10–12
ISSN: 0308-5961
DOI: 10.1016/j.telpol.2013.12.002⟩
Popis: Mobile communication technologies pervade our society and existing wireless networks are able to sense the movement of people, generating large volumes of data related to human activities, such as mobile phone call records. At the present, this kind of data is collected and stored by telecom operators infrastructures mainly for billing reasons, yet it represents a major source of information in the study of human mobility. In this paper, we propose an analytical process aimed at extracting interconnections between different areas of the city that emerge from highly correlated temporal variations of population local densities. To accomplish this objective, we propose a process based on two analytical tools: (i) a method to estimate the presence of people in different geographical areas; and (ii) a method to extract time- and space-constrained sequential patterns capable to capture correlations among geographical areas in terms of significant co-variations of the estimated presence. The methods are presented and combined in order to deal with two real scenarios of different spatial scale: the Paris Region and the whole France. A new pattern aiming to discover connections between regions is presented.The C-pattern is based on spatiotemporal aggregations of presence.It overcomes typical completeness limitations of CDR data due to the sample rate.We have developed an algorithm to extract these patterns efficiently.We have presented three different case studies using two different granularities.
Databáze: OpenAIRE