Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials
Autor: | Giulia Marcon, Simone A. Padoan, Johan Segers, Philippe Naveau, Pietro Muliere |
---|---|
Přispěvatelé: | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Marcon G., Padoan S.A., Naveau P., Muliere P., Segers J. |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Statistics and Probability
FOS: Computer and information sciences Multivariate statistics NONPARAMETRIC ESTIMATION MULTIVARIATE MAX-STABLE DISTRIBUTION 01 natural sciences Copula (probability theory) Methodology (stat.ME) 010104 statistics & probability Statistics Statistics::Methodology 0101 mathematics Extreme-value copula EXTREMAL DEPENDENCE EXTREMEVALUE COPULA [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment Statistics - Methodology ComputingMilieux_MISCELLANEOUS Mathematics [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Applied Mathematics 010102 general mathematics Nonparametric statistics Estimator Extremal dependence HEAVY RAINFALL Bernstein polynomial BERNSTEIN POLYNOMIALS EXTREMAL DEPENDENCE EXTREMEVALUE COPULA HEAVY RAINFALL NONPARAMETRIC ESTIMATION MULTIVARIATE MAX-STABLE DISTRIBUTION PICKANDS DEPENDENCE FUNCTION 13. Climate action Dependence function Statistics Probability and Uncertainty Maxima Settore SECS-S/01 - Statistica BERNSTEIN POLYNOMIALS PICKANDS DEPENDENCE FUNCTION |
Zdroj: | Journal of Statistical Planning and Inference Journal of Statistical Planning and Inference, Elsevier, 2017, 183, pp.1-17. ⟨10.1016/j.jspi.2016.10.004⟩ Journal of Statistical Planning and Inference, 2017, 183, pp.1-17. ⟨10.1016/j.jspi.2016.10.004⟩ |
ISSN: | 0378-3758 1873-1171 |
DOI: | 10.1016/j.jspi.2016.10.004⟩ |
Popis: | Many applications in risk analysis require the estimation of the dependence among multivariate maxima, especially in environmental sciences. Such dependence can be described by the Pickands dependence function of the underlying extreme-value copula. Here, a nonparametric estimator is constructed as the sample equivalent of a multivariate extension of the madogram. Shape constraints on the family of Pickands dependence functions are taken into account by means of a representation in terms of Bernstein polynomials. The large-sample theory of the estimator is developed and its finite-sample performance is evaluated with a simulation study. The approach is illustrated with a dataset of weekly maxima of hourly rainfall in France recorded from 1993 to 2011 at various weather stations all over the country. The stations are grouped into clusters of seven stations, where our interest is in the extremal dependence within each cluster. |
Databáze: | OpenAIRE |
Externí odkaz: |