Validation of a patient-specific one-dimensional model of the systemic arterial tree
Autor: | Fabienne Perren, Yvette Bohraus, Nikos Stergiopulos, François Lazeyras, Philippe Reymond |
---|---|
Rok vydání: | 2011 |
Předmět: |
Models
Anatomic Time Factors noninvasive measurements techniques Physiology Physics::Medical Physics Arteries/anatomy & histology/physiology Hemodynamics Blood Pressure Bifurcations Ultrasonography Doppler Color Pulse wave velocity Mathematics Willis Flow Distributed element model cerebral circulation Models Cardiovascular Doppler Arteries Mechanics Arterial tree Biomechanical Phenomena medicine.anatomical_structure Mathematical-Model Cardiology and Cardiovascular Medicine Blood Flow Velocity Adult medicine.medical_specialty Manometry Theoretical-Analysis Wave propagation Quantitative Biology::Tissues and Organs Pulse-Wave Velocity Cerebral-Circulation wave propagation ddc:616.0757 Circle Predictive Value of Tests Physiology (medical) medicine Humans Central Aortic Pressure phase-contrast-magnetic resonance imaging Computer-Simulation Reproducibility of Results Elasticity ddc:616.8 Surgery Blood pressure Nonlinear Dynamics Flow (mathematics) Regional Blood Flow Vascular resistance Vascular Resistance Stress Mechanical Magnetic Resonance Angiography |
Zdroj: | American Journal of Physiology. Heart and Circulatory Physiology, Vol. 301, No 3 (2011) pp. H1173-1182 |
ISSN: | 1522-1539 0363-6135 |
DOI: | 10.1152/ajpheart.00821.2010 |
Popis: | Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 301: H1173-H1182, 2011. First published May 27, 2011; doi:10.1152/ajpheart.00821.2010.-The aim of this study is to develop and validate a patient-specific distributed model of the systemic arterial tree. This model is built using geometric and hemodynamic data measured on a specific person and validated with noninvasive measurements of flow and pressure on the same person, providing thus a patient-specific model and validation. The systemic arterial tree geometry was obtained from MR angiographic measurements. A nonlinear viscoelastic constitutive law for the arterial wall is considered. Arterial wall distensibility is based on literature data and adapted to match the wave propagation velocity of the main arteries of the specific subject, which were estimated by pressure waves traveling time. The intimal shear stress is modeled using the Witzig-Womersley theory. Blood pressure is measured using applanation tonometry and flow rate using transcranial ultrasound and phase-contrast-MRI. The model predicts pressure and flow waveforms in good qualitative and quantitative agreement with the in vivo measurements, in terms of wave shape and specific wave features. Comparison with a generic one-dimensional model shows that the patient-specific model better predicts pressure and flow at specific arterial sites. These results obtained let us conclude that a patient-specific one-dimensional model of the arterial tree is able to predict well pressure and flow waveforms in the main systemic circulation, whereas this is not always the case for a generic one-dimensional model. |
Databáze: | OpenAIRE |
Externí odkaz: |