Use of hidden Markov capture–recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations
Autor: | Willy Reggioni, Luigi Molinari, Paolo Ciucci, Nina Luisa Santostasi, Romolo Caniglia, Olivier Gimenez, Elena Fabbri |
---|---|
Přispěvatelé: | Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut de Recherche pour le Développement (IRD [France-Sud]), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Paul-Valéry - Montpellier 3 (UM3), Université Paul-Valéry - Montpellier 3 (UM3)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), ANR-16-CE02-0007,DEMOCOM,Effets de la gestion et du climat sur la dynamique des communautés - Développement d'une démographie multi-espèce.(2016) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
Population prevalence Viterbi algorithm anthropogenic introgression capture–recapture hidden Markov models hybridization multievent models Sample (statistics) 010603 evolutionary biology 01 natural sciences Mark and recapture 03 medical and health sciences Abundance (ecology) Statistics Hidden Markov model education Ecology Evolution Behavior and Systematics ComputingMilieux_MISCELLANEOUS 030304 developmental biology Nature and Landscape Conservation Original Research Estimation 0303 health sciences education.field_of_study Ecology biology Sampling (statistics) biology.organism_classification Canis [SDE.BE]Environmental Sciences/Biodiversity and Ecology |
Zdroj: | Ecology and Evolution Ecology and Evolution, Wiley Open Access, 2019, 9 (2), pp.744-755. ⟨10.1002/ece3.4819⟩ Ecology and Evolution, 2019, 9 (2), pp.744-755. ⟨10.1002/ece3.4819⟩ |
ISSN: | 2045-7758 |
DOI: | 10.1002/ece3.4819⟩ |
Popis: | International audience; Estimating the relative abundance (prevalence) of different population segments is a key step in addressing fundamental research questions in ecology, evolution, and conservation. The raw percentage of individuals in the sample (naive prevalence) is generally used for this purpose, but it is likely to be subject to two main sources of bias. First, the detectability of individuals is ignored; second, classification errors may occur due to some inherent limits of the diagnostic methods. We developed a hidden Markov (also known as multievent) capture–recapture model to estimate prevalence in free-ranging populations accounting for imperfect detectability and uncertainty in individual's classification. We carried out a simulation study to compare naive and model-based estimates of prevalence and assess the performance of our model under different sampling scenarios. We then illustrate our method with a real-world case study of estimating the prevalence of wolf (Canis lupus) and dog (Canis lupus familiaris) hybrids in a wolf population in northern Italy. We showed that the prevalence of hybrids could be estimated while accounting for both detectability and classification uncertainty. Model-based prevalence consistently had better performance than naive prevalence in the presence of differential detectability and assignment probability and was unbiased for sampling scenarios with high detectability. We also showed that ignoring detectability and uncertainty in the wolf case study would lead to underestimating the prevalence of hybrids. Our results underline the importance of a model-based approach to obtain unbiased estimates of prevalence of different population segments. Our model can be adapted to any taxa, and it can be used to estimate absolute abundance and prevalence in a variety of cases involving imperfect detection and uncertainty in classification of individuals (e.g., sex ratio, proportion of breeders, and prevalence of infected individuals). |
Databáze: | OpenAIRE |
Externí odkaz: |