Mu transposition complex mutagenesis in Lactococcus lactis--identification of genes affecting nisin production
Autor: | H. Savilahti, Chunmei Li, Ruiqing Li, Y. Bai, Per E. J. Saris, Haijin Xu, D.-Z. Jiang, H. Turakainen, Z. Xuanyuan, Mingqiang Qiao, X. Zhang, Z. Wu |
---|---|
Rok vydání: | 2009 |
Předmět: |
Transposable element
Glycine Mutagenesis (molecular biology technique) Biology Applied Microbiology and Biotechnology Insertional mutagenesis 03 medical and health sciences chemistry.chemical_compound Bacteriocin Bacterial Proteins polycyclic compounds Nisin Aldose-Ketose Isomerases 030304 developmental biology 0303 health sciences 030306 microbiology Lactococcus lactis food and beverages Membrane Proteins General Medicine Gene Expression Regulation Bacterial biochemical phenomena metabolism and nutrition biology.organism_classification Culture Media Mutagenesis Insertional chemistry Biochemistry Genes Bacterial DNA Transposable Elements bacteria Ampicillin Bacteriophage Mu Biotechnology Transformation efficiency Transcription Factors |
Zdroj: | Journal of applied microbiology. 106(1) |
ISSN: | 1365-2672 |
Popis: | Aims: This paper describes optimization of electrotransformation of Mu transposition complexes into Lactococcus lactis cells and identification of genes affecting nisin production. Methods and Results: The highest transformation efficiency, 1·1 × 102 transformants μg−1 of input transposon DNA, was achieved when cells were grown to an OD600 of 0·5 in the presence of 1·5% of glycine and treated with 20 μg ml−1 ampicillin for 60 min. Three insertions affecting nisin production, which were identified at nisB, fhuR, and rpiA genes, were screened from a library of ∼2000 erythromycin-resistant transformants using a nisin bioassay method. NisB is part of the nisin biosynthetic machinery, explaining the loss of nisin production in nisB mutant. FhuR is a transcription regulator involved in sulphur acquisition. Inactivation of fhuR presumably results in a low cellular cystein level, which affects nisin biosynthesis that involves utilization of cystein. RpiA is involved in pentose phosphate pathway and carbon fixation. The rpiA mutant showed reduction in nisin production and slow growth rate. Conclusions: The results showed that Mu transposition complex mutagenesis can be used to identify genes in L. lactis. Three genes involved in nisin production were identified. Significance and Impact of the Study: Expanding the Mu transposition-based mutagenesis to Lactococci adds a new tool for studies of industrially important bacteria. |
Databáze: | OpenAIRE |
Externí odkaz: |