Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair

Autor: Laurent Maloisel, Serge Gangloff, Jean-Baptiste Charbonnier, Clémentine Brocas, Claudine Dherin
Přispěvatelé: Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Biologie Structurale et Radiobiologie (LBSR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etudes de la Réparation de l'ADN (LERA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Radiobiologie moléculaire et cellulaire (RMC), Système membranaires, photobiologie, stress et détoxication (SMPSD), Laboratoire de Radiobiologie de l'ADN (LRD)
Rok vydání: 2010
Předmět:
DNA Repair
DNA polymerase
MESH: DNA Polymerase III
[SDV]Life Sciences [q-bio]
MESH: Protein Structure
Secondary

MESH: Catalytic Domain
MESH: DNA Replication
DNA-Directed DNA Polymerase
MESH: Amino Acid Sequence
Biochemistry
DNA polymerase delta
Protein Structure
Secondary

MESH: Saccharomyces cerevisiae Proteins
0302 clinical medicine
Catalytic Domain
MESH: DNA-Directed DNA Polymerase
Pol3
Recombination
Genetic

MESH: DNA Repair
Genetics
0303 health sciences
DNA clamp
Molecular Structure
biology
MESH: Saccharomyces cerevisiae
Cell biology
MESH: Mutagenesis
Site-Directed

MESH: Recombination
Genetic

DNA polymerase mu
Protein Binding
DNA Replication
Saccharomyces cerevisiae Proteins
DNA polymerase II
Molecular Sequence Data
MESH: Molecular Structure
Saccharomyces cerevisiae
03 medical and health sciences
Proliferating Cell Nuclear Antigen
MESH: Protein Binding
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

Amino Acid Sequence
Molecular Biology
Replication protein A
Alleles
DNA Polymerase III
030304 developmental biology
MESH: Molecular Sequence Data
MESH: Alleles
DNA replication
Pol32
Cell Biology
Processivity
Pol31
MESH: Proliferating Cell Nuclear Antigen
Mutagenesis
Site-Directed

biology.protein
Genes
Lethal

MESH: Genes
Lethal

030217 neurology & neurosurgery
Zdroj: DNA Repair
DNA Repair, Elsevier, 2010, 9 (10), pp.1098-1111. ⟨10.1016/j.dnarep.2010.07.013⟩
DNA Repair, 2010, 9 (10), pp.1098-1111. ⟨10.1016/j.dnarep.2010.07.013⟩
ISSN: 1568-7864
DOI: 10.1016/j.dnarep.2010.07.013
Popis: International audience; Eukaryotic DNA polymerase δ (Pol δ) activity is crucial for chromosome replication and DNA repair and thus, plays an essential role in genome stability. In Saccharomyces cerevisiae, Pol δ is a heterotrimeric complex composed of the catalytic subunit Pol3, the structural B subunit Pol31, and Pol32, an additional auxiliary subunit. Pol3 interacts with Pol31 thanks to its C-terminal domain (CTD) and this interaction is of functional importance both in DNA replication and DNA repair. Interestingly, deletion of the last four C-terminal Pol3 residues, LSKW, in the pol3-ct mutant does not affect DNA replication but leads to defects in homologous recombination and in break-induced replication (BIR) repair pathways. The defect associated with pol3-ct could result from a defective interaction between Pol δ and a protein involved in recombination. However, we show that the LSKW motif is required for the interaction between Pol3 C-terminal end and Pol31. This loss of interaction is relevant in vivo since we found that pol3-ct confers HU sensitivity on its own and synthetic lethality with a POL32 deletion. Moreover, pol3-ct shows genetic interactions, both suppression and synthetic lethality, with POL31 mutant alleles. Structural analyses indicate that the B subunit of Pol δ displays a major conserved region at its surface and that pol31 alleles interacting with pol3-ct, correspond to substitutions of Pol31 amino acids that are situated in this particular region. Superimposition of our Pol31 model on the 3D architecture of the phylogenetically related DNA polymerase α (Pol α) suggests that Pol3 CTD interacts with the conserved region of Pol31, thus providing a molecular basis to understand the defects associated with pol3-ct. Taken together, our data highlight a stringent dependence on Pol δ complex stability in DNA repair.
Databáze: OpenAIRE