Assessment of exposure to airborne carbon nanotubes by laser-induced breakdown spectroscopy analysis of filter samples

Autor: Jean-Baptiste Sirven, S. Pontreau, Audrey Roynette, François Gensdarmes, S. Motellier, François-Xavier Ouf, Michel Tabarant, P. Dewalle, C. Quéré, Simon Clavaguera, V. Fauvet, A. Guiot, L. Golanski, M. Amdaoud
Přispěvatelé: CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), IVEA Solution, Centre Scientifique d'Orsay, Département des Technologies des NanoMatériaux (DTNM), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Physique et de Métrologie des Aérosols (DSU/SERAC/LPMA), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Service d'études analytiques et de réactivité des surfaces (SEARS), Département de Physico-Chimie (DPC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de physique et de métrologie des aérosols (IRSN/PSN-RES/SCA/LPMA), Service du Confinement et de l'Aérodispersion des polluants (IRSN/PSN-RES/SCA), Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN), This work was part of the GENESIS project (Global Evaluation of Nanocomposites for Emerging Safe Industrial Solutions) supported by OSEO (France)
Rok vydání: 2017
Předmět:
Zdroj: Journal of Analytical Atomic Spectrometry
Journal of Analytical Atomic Spectrometry, Royal Society of Chemistry, 2017, 32, ⟨10.1039/C7JA00121E⟩
Journal of Analytical Atomic Spectrometry, 2017, 32, pp.1868-1877. ⟨10.1039/C7JA00121E⟩
ISSN: 1364-5544
0267-9477
DOI: 10.1039/c7ja00121e
Popis: International audience; Exposure assessment is a key step in the evaluation of the risk induced by the handling of engineered nanomaterials. It is a very complex task, because several properties of nanoparticles are assumed to have an effect on their hazards. For exposure monitoring at the workplace, real-time onsite measurements are commonly implemented to measure the particles size and number density, whereas the sampled material is subsequently analysed by electron microscopy. A complementary approach would consist in doing onsite chemical analysis of the filter samples, in order to routinely monitor a potential chronic exposure. Laser-induced breakdown spectroscopy (LIBS) has distinctive advantages for this purpose. Therefore, this work aims at evaluating the performances of LIBS to assess the exposure to airborne carbon nanotubes (CNTs) at the workplace. As carbon is a ubiquitous element in the environment, our strategy was to target metal impurities in CNTs, aluminum and iron in our case. Then, we proceeded in three steps. First, we optimized the choice of the filter type to get the lowest detection limit for both elements. Secondly, this filter was used to quantitatively measure deposited CNTs. Eventually, we conducted an onsite measurement campaign in an industrial CNT production plant to evaluate the exposure in a real situation. We demonstrated that we could reach a detection limit for CNTs compliant with the current NIOSH recommendation of 1 μg m$^{−3}$, and that the detected CNTs during the onsite campaign in areas accessible to workers were at an extremely low concentration, several orders of magnitude lower than this recommendation.
Databáze: OpenAIRE