A Categorical Characterization of Relative Entropy on Standard Borel Spaces
Autor: | Nicolas Gagné, Prakash Panangaden |
---|---|
Rok vydání: | 2018 |
Předmět: |
FOS: Computer and information sciences
Pure mathematics Functor Kullback–Leibler divergence General Computer Science Information Theory (cs.IT) Computer Science - Information Theory 010102 general mathematics 0102 computer and information sciences Characterization (mathematics) 01 natural sciences Convexity Theoretical Computer Science 010201 computation theory & mathematics Mathematics::Category Theory Statistical inference Probability distribution Uniqueness 0101 mathematics Categorical variable Mathematics |
Zdroj: | MFPS |
ISSN: | 1571-0661 |
DOI: | 10.1016/j.entcs.2018.03.020 |
Popis: | We give a categorical treatment, in the spirit of Baez and Fritz, of relative entropy for probability distributions defined on standard Borel spaces. We define a category suitable for reasoning about statistical inference on standard Borel spaces. We define relative entropy as a functor into Lawvere's category and we show convexity, lower semicontinuity and uniqueness. 16 pages |
Databáze: | OpenAIRE |
Externí odkaz: |