Person Re-identification Using Robust Brightness Transfer Functions Based on Multiple Detections
Autor: | Alessandro Perina, Vittorio Murino, Amran Bhuiyan, Behzad Mirmahboub |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Image Analysis and Processing — ICIAP 2015 ISBN: 9783319232331 ICIAP (2) |
DOI: | 10.1007/978-3-319-23234-8_42 |
Popis: | Re-identification systems aim at recognizing the same individuals in multiple cameras and one of the most relevant problems is that the appearance of same individual varies across cameras due to illumination and viewpoint changes. This paper proposes the use of Minimum Multiple Cumulative Brightness Transfer Functions to model this appearance variations. It is multiple frame-based learning approach which leverages consecutive detections of each individual to transfer the appearance, rather than learning brightness transfer function from pairs of images. We tested our approach on standard multi-camera surveillance datasets showing consistent and significant improvements over existing methods on two different datasets without any other additional cost. Our approach is general and can be applied to any appearance-based method. |
Databáze: | OpenAIRE |
Externí odkaz: |