Identification of a novel truncating mutation in PALB2 gene by a multigene sequencing panel for mutational screening of breast cancer risk-associated and related genes
Autor: | Alessandro Weisz, Anna Guacci, Angela Cordella, Giovanni Nassa, Stefano Pepe, Chiara Carlomagno, Teresa Rocco, Giorgio Giurato, Roberta Tarallo, Francesca Rizzo |
---|---|
Přispěvatelé: | Guacci, A., Cordella, A., Rocco, T., Giurato, G., Nassa, G., Rizzo, F., Carlomagno, C., Pepe, S., Tarallo, R., Weisz, A. |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Microbiology (medical) Cancer-Predisposing Gene DNA damage PALB2 Clinical Biochemistry Biology PALB2 Gene DNA sequencing Breast cancer cancer gene panel next-generation sequencing pathogenic variants 03 medical and health sciences 0302 clinical medicine Germline mutation Immunology and Allergy Gene Genetics Biochemistry (medical) Public Health Environmental and Occupational Health Hematology Medical Laboratory Technology genomic DNA 030104 developmental biology 030220 oncology & carcinogenesis Brief Reports |
Popis: | Background Breast cancer (BC) is the most common neoplasm in women, with 5%-10% patients showing a familial predisposition, where germline mutations in BRCA1/BRCA2 genes are found in -20% of cases. Next-generation sequencing (NGS) is among the best available options for genetic screening, providing several benefits that include enhanced sensitivity and unbiased mutation detection. PALB2 (partner and localizer of BRCA2) is a cancer predisposing gene recently described that encodes a protein partner of BRCA2 involved in DNA double-strand break repair and cell cycle control. The DNA damage response represents a key cellular event, targeted by innovative anticancer therapies, including those based on poly (ADP-ribose) polymerase (PARP) inhibitors targeting PARP1 and PARP2 enzymes, activated by DNA damage and involved in single-strand break and base excision repair. Methods Genomic DNA was isolated from 34 patient samples and four BC cell lines, as controls, and 27 breast cancer predisposing genes belonging to the BRCA1/BRCA2 and PARP pathways were sequenced by NGS. Results The panel described here allowed identification of several sequence variations in most investigated genes, among which we found a novel truncating mutation in PALB2. Conclusions The NGS-based strategy designed here for molecular analysis of a customized panel of BC predisposing and related genes was found to perform effectively, providing a comprehensive exploration of all genomic sequences of the investigated genes. It is thus useful for BC molecular diagnosis, in particular for familiar cases where alterations in routinely investigated genes, such as BRCAs, result to be absent. |
Databáze: | OpenAIRE |
Externí odkaz: |