The Role of pH, Temperature, and NH4 + during Mica Weathering

Autor: Guntram Jordan, F. Javier Huertas, Alexander E. S. Van Driessche, Daniel Lamarca-Irisarri, Chiara Cappelli
Přispěvatelé: European Commission, Ministerio de Economía y Competitividad (España), Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada = University of Granada (UGR), Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Ludwig-Maximilians-Universität München (LMU), University of Alabama [Tuscaloosa] (UA), Universidad de Granada (UGR)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
Rok vydání: 2019
Předmět:
Zdroj: Digital.CSIC. Repositorio Institucional del CSIC
instname
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry, In press, ⟨10.1021/acsearthspacechem.9b00219⟩
ACS Earth and Space Chemistry, ACS, In press, ⟨10.1021/acsearthspacechem.9b00219⟩
ACS Earth and Space Chemistry, 3 (11). pp. 2613-2622.
ISSN: 2472-3452
DOI: 10.1021/acsearthspacechem.9b00219⟩
Popis: Phyllosilicates are abundant materials both on Earth and Mars, and the weathering of these minerals is an essential part of a wide variety of geochemical cycles. Alteration mainly takes place at the solution-mineral interface and needs to be fully understood in order to correctly model global water-rock interactions. To directly link the physicochemical solution properties to the dominant surface processes controlling phyllosilicate alteration, we used a custom-built hydrothermal atomic force microscope to study in situ the surface reactivity of biotite, phlogopite, and muscovite in contact with aqueous solutions for a broad range of temperatures and pH values. On the basis of our microscopic observations correlated with previously obtained macroscopic dissolution rates, we have constructed a tentative weathering diagram for mica minerals connecting the dominant surface mechanisms and bulk dissolution behavior to the physicochemical solution properties (pH, T, and speciation). The resulting diagram can be divided into two main areas: low-grade weathering occurring at low temperatures and mildly acidic to neutral pH and high-grade weathering taking place at high temperatures and low pH, separated by a transition zone. Each of these areas is characterized by a series of chemical and physical surface processes, which can be related directly or indirectly to incongruent and congruent bulk dissolution. The transition temperatures and pH values depend on the type of mica, with biotite being the most reactive one and muscovite the least reactive one. It is noteworthy that for close to neutral pH conditions the presence of NH4 + shifts the transitions from low- to high-grade weathering to a significantly lower temperature. © 2019 American Chemical Society.
This study was supported by funding from the Spanish Government Contracts (MINECO CGL2011-22567 and CGL2014-55108-P, with contribution of EU-FEDER funds) and the PICS 2017 CNRS program (PICS07954). D.L.-I. was supported by an FPI fellowship (BES-2012-058890) and Grants (EEBB-I-16-11519 and EEBB-I-15-10043
Databáze: OpenAIRE