Non-kissing and non-crossing complexes for locally gentle algebras
Autor: | Yann Palu, Pierre-Guy Plamondon, Vincent Pilaud |
---|---|
Přispěvatelé: | Université de Picardie Jules Verne (UPJV), Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 (LAMFA), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), ANR-15-CE40-0004,SC3A,Surfaces, Catégorification et Combinatoire des Algèbres Amassées(2015), ANR-17-CE40-0018,CAPPS,Analyse Combinatoire de Polytopes et de Subdivisions Polyédrales(2017) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Algebra and Number Theory [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] 05E45 05E10 16G20 010308 nuclear & particles physics 010102 general mathematics Quiver Boundary (topology) Surface (topology) 01 natural sciences Homeomorphism Simplicial complex [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] 0103 physical sciences Mutation (knot theory) FOS: Mathematics Discrete Mathematics and Combinatorics Mathematics - Combinatorics Combinatorics (math.CO) Isomorphism Representation Theory (math.RT) 0101 mathematics Bijection injection and surjection Mathematics - Representation Theory Mathematics |
Zdroj: | Journal of Combinatorial Algebra Journal of Combinatorial Algebra, 2019, 3 (4), pp.401-438. ⟨10.4171/JCA/35⟩ |
DOI: | 10.4171/JCA/35⟩ |
Popis: | Starting from a locally gentle bound quiver, we define on the one hand a simplicial complex, called the non-kissing complex. On the other hand, we construct a punctured, marked, oriented surface with boundary, endowed with a pair of dual dissections. From those geometric data, we define two simplicial complexes: the accordion complex, and the slalom complex, generalizing work of A. Garver and T. McConville in the case of a disk. We show that all three simplicial complexes are isomorphic, and that they are pure and thin. In particular, there is a notion of mutation on their facets, akin to $\tau$-tilting mutation. Along the way, we also construct inverse bijections between the set of isomorphism classes of locally gentle bound quivers and the set of homeomorphism classes of punctured, marked, oriented surfaces with boundary, endowed with a pair of dual dissections. Comment: 27 pages, 30 figures; Version 2: Minor bibliographic updates |
Databáze: | OpenAIRE |
Externí odkaz: |