An accessible visible-light actinometer for the determination of photon flux and optical pathlength in flow photo microreactors

Autor: Anca Roibu, M. Enis Leblebici, Glen Meir, Simon Kuhn, Tom Van Gerven, Senne Fransen
Rok vydání: 2018
Předmět:
Zdroj: Scientific Reports
Scientific Reports, Vol 8, Iss 1, Pp 1-10 (2018)
ISSN: 2045-2322
DOI: 10.1038/s41598-018-23735-2
Popis: Coupling photochemistry with flow microreactors enables novel synthesis strategies with higher efficiencies compared to batch systems. Improving the reproducibility and understanding of the photochemical reaction mechanisms requires quantitative tools such as chemical actinometry. However, the choice of actinometric systems which can be applied in microreactors is limited, due to their short optical pathlength in combination with a large received photon flux. Furthermore, actinometers for the characterization of reactions driven by visible light between 500 and 600 nm (e.g. photosensitized oxidations) are largely missing. In this paper, we propose a new visible-light actinometer which can be applied in flow microreactors between 480 and 620 nm. This actinometric system is based on the photoisomerization reaction of a diarylethene derivative from its closed to the open form. The experimental protocol for actinometric measurements is facile and characterized by excellent reproducibility and we also present an analytical estimation to calculate the photon flux. Furthermore, we propose an experimental methodology to determine the average pathlength in microreactors using actinometric measurements. In the context of a growing research interest on using flow microreactors for photochemical reactions, the proposed visible-light actinometer facilitates the determination of the received photon flux and average pathlength in confined geometries. ispartof: SCIENTIFIC REPORTS vol:8 issue:1 ispartof: location:England status: published
Databáze: OpenAIRE