Geometric Models for Lie–Hamilton Systems on ℝ2

Autor: Javier de Lucas, Julia Lange
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Mathematics
Volume 7
Issue 11
Mathematics, Vol 7, Iss 11, p 1053 (2019)
ISSN: 2227-7390
DOI: 10.3390/math7111053
Popis: This paper provides a geometric description for Lie&ndash
Hamilton systems on R 2 with locally transitive Vessiot&ndash
Guldberg Lie algebras through two types of geometric models. The first one is the restriction of a class of Lie&ndash
Hamilton systems on the dual of a Lie algebra to even-dimensional symplectic leaves relative to the Kirillov-Kostant-Souriau bracket. The second is a projection onto a quotient space of an automorphic Lie&ndash
Hamilton system relative to a naturally defined Poisson structure or, more generally, an automorphic Lie system with a compatible bivector field. These models give a natural framework for the analysis of Lie&ndash
Hamilton systems on R 2 while retrieving known results in a natural manner. Our methods may be extended to study Lie&ndash
Hamilton systems on higher-dimensional manifolds and provide new approaches to Lie systems admitting compatible geometric structures.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje