Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group

Autor: Séverine Rigot, Katrin Fässler, Tuomas Orponen
Přispěvatelé: University of Fribourg, University of Helsinki, Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE40-0018,SRGI,Géométrie sous-Riemannienne et Interactions(2015)
Rok vydání: 2020
Předmět:
Zdroj: Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2020, 373 (8), pp.5957-5996. ⟨10.1090/tran/8146⟩
ISSN: 1088-6850
0002-9947
DOI: 10.1090/tran/8146
Popis: A Semmes surface in the Heisenberg group is a closed set $S$ that is upper Ahlfors-regular with codimension one and satisfies the following condition, referred to as Condition B. Every ball $B(x,r)$ with $x \in S$ and $0 < r < \operatorname{diam} S$ contains two balls with radii comparable to $r$ which are contained in different connected components of the complement of $S$. Analogous sets in Euclidean spaces were introduced by Semmes in the late $80$'s. We prove that Semmes surfaces in the Heisenberg group are lower Ahlfors-regular with codimension one and have big pieces of intrinsic Lipschitz graphs. In particular, our result applies to the boundary of chord-arc domains and of reduced isoperimetric sets.
39 pages, 4 figures
Databáze: OpenAIRE