Integrating flexible electronics for pulsed electric field delivery in a vascularized 3D glioblastoma model

Autor: David Moreau, Martin Baca, Gerwin Dijk, Attila Kaszás, Marie C. Lefevre, Rodney P. O'Connor
Přispěvatelé: École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Ecole Natl Super Mines Gardanne, Institut de Neurosciences de la Timone (INT), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE19-0029,FIDELGLIO,Dispositifs bioélectroniques flexibles et implantables pour l'amélioration du traitement du Glioblastome par impulsions électriques(2018)
Rok vydání: 2021
Předmět:
Zdroj: npj Flexible eletronics
npj Flexible eletronics, 2021, 5 (1), pp.19. ⟨10.1038/s41528-021-00115-x⟩
npj Flexible Electronics, Vol 5, Iss 1, Pp 1-9 (2021)
ISSN: 2397-4621
DOI: 10.1038/s41528-021-00115-x
Popis: Glioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.
Databáze: OpenAIRE