Stabilizing strongly correlated photon fluids with non-Markovian reservoirs

Autor: Cristiano Ciuti, Davide Rossini, Alberto Biella, José Lebreuilly, F. Storme, Iacopo Carusotto, Rosario Fazio
Přispěvatelé: Lebreuilly, Jose, Biella, Alberto, Storme, Florent, Rossini, Davide, Fazio, Rosario, Ciuti, Cristiano, Carusotto, Iacopo
Rok vydání: 2017
Předmět:
Zdroj: Physical review. A (Online) 96 (2017). doi:10.1103/PhysRevA.96.033828
info:cnr-pdr/source/autori:Lebreuilly J.; Biella A.; Storme F.; Rossini D.; Fazio R.; Ciuti C.; Carusotto I./titolo:Stabilizing strongly correlated photon fluids with non-Markovian reservoirs/doi:10.1103%2FPhysRevA.96.033828/rivista:Physical review. A (Online)/anno:2017/pagina_da:/pagina_a:/intervallo_pagine:/volume:96
DOI: 10.48550/arxiv.1704.01106
Popis: We introduce a novel frequency-dependent incoherent pump scheme with a square-shaped spectrum as a way to study strongly correlated photons in arrays of coupled nonlinear resonators. This scheme can be implemented via a reservoir of population-inverted two-level emitters with a broad distribution of transition frequencies. Our proposal is predicted to stabilize a non-equilibrium steady state sharing important features with a zero-temperature equilibrium state with a tunable chemical potential. We confirm the efficiency of our proposal for the Bose-Hubbard model by computing numerically the steady state for finite system sizes: first, we predict the occurrence of a sequence of incompressible Mott-Insulator-like states with arbitrary integer densities presenting strong robustness against tunneling and losses. Secondly, for stronger tunneling amplitudes or non-integer densities, the system enters a coherent regime analogous to the superfluid state. In addition to an overall agreement with the zero-temperature equilibrium state, exotic non-equilibrium processes leading to a finite entropy generation are pointed out in specific regions of parameter space. The equilibrium ground state is shown to be recovered by adding frequency-dependent losses. The promise of this improved scheme in view of quantum simulation of the zero temperature many-body physics is highlighted.
Databáze: OpenAIRE