A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4
Autor: | Robabeh Kalhor, Paul R. Gilson, Kiaran Kirk, Alan F. Cowman, Adele M. Lehane, Anthony T. Papenfuss, Tania F. de Koning-Ward, Mark D. Hulett, Rasika Kumarasingha, Jennifer K. Thompson, Jessica K. Holien, Belinda M. Abbott, Madeline G Dans, Jocelyn Sietsma Penington, Xinxin Zhang, Hayley E Bullen, Melissa J. Buskes, Brendan S. Crabb, Tatiana P. Soares da Costa |
---|---|
Rok vydání: | 2019 |
Předmět: |
Models
Molecular 0301 basic medicine Erythrocytes Lysis Plasmodium falciparum Drug Resistance Protozoan Proteins lcsh:Medicine Article Cell membrane 03 medical and health sciences 0302 clinical medicine medicine Point Mutation Parasite hosting lcsh:Science Multidisciplinary Whole Genome Sequencing Molecular medicine biology Chemistry Intracellular parasite Cell Membrane Sodium lcsh:R Isoquinolines biology.organism_classification In vitro 3. Good health Parasite biology 030104 developmental biology medicine.anatomical_structure Mechanism of action Biochemistry lcsh:Q Efflux Sodium-Potassium-Exchanging ATPase medicine.symptom 030217 neurology & neurosurgery |
Zdroj: | Scientific Reports, Vol 9, Iss 1, Pp 1-15 (2019) Scientific Reports |
ISSN: | 2045-2322 |
Popis: | We developed a novel series of antimalarial compounds based on a 4-cyano-3-methylisoquinoline. Our lead compound MB14 achieved modest inhibition of the growth in vitro of the human malaria parasite, Plasmodium falciparum. To identify its biological target we selected for parasites resistant to MB14. Genome sequencing revealed that all resistant parasites bore a single point S374R mutation in the sodium (Na+) efflux transporter PfATP4. There are many compounds known to inhibit PfATP4 and some are under preclinical development. MB14 was shown to inhibit Na+ dependent ATPase activity in parasite membranes, consistent with the compound targeting PfATP4 directly. PfATP4 inhibitors cause swelling and lysis of infected erythrocytes, attributed to the accumulation of Na+ inside the intracellular parasites and the resultant parasite swelling. We show here that inhibitor-induced lysis of infected erythrocytes is dependent upon the parasite protein RhopH2, a component of the new permeability pathways that are induced by the parasite in the erythrocyte membrane. These pathways mediate the influx of Na+ into the infected erythrocyte and their suppression via RhopH2 knockdown limits the accumulation of Na+ within the parasite hence protecting the infected erythrocyte from lysis. This study reveals a role for the parasite-induced new permeability pathways in the mechanism of action of PfATP4 inhibitors. |
Databáze: | OpenAIRE |
Externí odkaz: |