Interaction-driven giant thermopower in magic-angle twisted bilayer graphene

Autor: Arup Kumar Paul, Ayan Ghosh, Souvik Chakraborty, Ujjal Roy, Ranit Dutta, K. Watanabe, T. Taniguchi, Animesh Panda, Adhip Agarwala, Subroto Mukerjee, Sumilan Banerjee, Anindya Das
Rok vydání: 2022
Předmět:
Zdroj: Nature Physics
Popis: Magic-angle twisted bilayer graphene (MtBLG) has proven to be an extremely promising new platform to realize and study a host of emergent quantum phases arising from the strong correlations in its narrow bandwidth flat band. In this regard, thermal transport phenomena like thermopower, in addition to being coveted technologically, is also sensitive to the particle-hole (PH) asymmetry, making it a crucial tool to probe the underlying electronic structure of this material. We have carried out thermopower measurements of MtBLG as a function of carrier density, temperature and magnetic field, and report the observation of an unusually large thermopower reaching up to a value as high as $\sim \bf{100\mu V/K}$ at a low temperature of 1K. Surprisingly, our observed thermopower exhibiting peak-like features in close correspondence to the resistance peaks around the integer Moire fillings, including the Dirac Point, violating the Mott formula. %Surprisingly, our observed thermopower exhibits peak-like features in close correspondence to the resistance peaks around the integer Moire fillings, including the Dirac Point, which completely violates the Mott formula. We show that the large thermopower peaks and their %non-monotonic dependence with temperature and magnetic field associated behaviour arise from the emergent highly PH asymmetric electronic structure due to the cascade of Dirac revivals. Furthermore, the thermopower shows an anomalous peak around the superconducting transition on the hole side and points towards the possible role of enhanced superconducting fluctuations in MtBLG.
Databáze: OpenAIRE